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Abstract 

Following the stochastic nature of the multiple Coulomb scattering process, we 
derive a formal solution for the parameterieation of the errors that are inflicted on 
the particle trajectory. Our approach co&rms au earlier but non general solution 
[l]. Based on our procedure we construct a random walk algorithm to estimate these 
errors for any number of radiation lengths, L,. Using this algorithm to study the error 
estimate as a function of L,, we tiud good agreement with the Highland formula [2]. 

Introduction 

Multiple Coulomb scattering (MS) introduces small deviations into the track parameters 
compared with those of an unscattered track (i.e a particle traversing the vacuum). The 
effect is usually described by an angle, 0 *Is [3] and a corresponding displacement in the 
position, E [4]. It is usually assumed that the error on the physical process of measurement 
(the resolution) and the MS errors are independent. Also note that the MS process can be 
decoupled from energy losses. 

As a stochastic process, the probability for a scattering event, denoted by the state X(t) 
in the phase space, to take place at time t,, depends only on the physical condition in 
the immediate past, at time t < t,. This is formally described as a convolution of local 
probability density functions satisfying the Chapman - Kolmogorov identity, 

pz(X,tlY,s) = JPl(X,tlF,u)P?(E,ulY,s)d~, 

where ps(X,t]Y, s)dX is the probability that the event X < X(t) 5 X + dX occurs at time 
t, given that X(B) = Y for t > s. The subscript, ‘2’, emphasizes the fact that only the state 
in the immediate past matters. Traversing a material of thickness X, the particle undergoes 
successive small-angle deflections symmetrically distributed about the incident direction. 
Applying the central limit theorem of statistics to a large number of independent scattering 
events, the distribution of the scattering angle can be approximated by a Gaussian. The 
mean squared MS angle is defined as, (0’) = n(8*), w h ere n is the number of collisions (n 
is proportional to the number of atoms in the material) and (0s) is the mean squared angle 
of a single scattering event defined as 151: 
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with g the differential (Rutherford) cross section for a single scattering event. The accurnu- 

lative scattering angle is estimated by the rms of this Gaussian distribution, @Ais = m. 
This paper deals with the estimation of the errors of the track parameters due to MS, 

in the milieu of track reconstruction in high energy physics detectors. At a fixed plane 
of measurement, a track is locally defined by five parameters; two position coordina.tes, 
two direction cosines (or angles), and the radius of curvature (when there is a magnetic 
field), which is proportional to the momentum. In Cartesian coordinates, one has a five 
dimensional vector, v = (z, jc,y,i, i). Note however, that the parameterization of the track 
and the errors of its parameters in one coordinate system can always be transformed to 
another coordinate system appropriate to the detector geometry. It is thus sufficient to 
evaluate the errors for one set of parameters, for example in the Cartesian system. 

In order to estimate the MS effect on the track parameters, it is necessary to evaluate the 
errors in a given plane of measurement - location b, after the particle has traversed a material 
with a given thickness, X, corresponding to a number of, L, = 6, radiation lengths, that 
is located between the b and a planes of measurement. 

We organize the paper in three sections. Based on a statistical approach, the first section 
describes a formal solution of the problem of the MS error parameterization for a material 
with any number of radiation lengths. In the second section we use our solution to construct 
an algorithm for a Monte Carlo study of the MS errors for various L,. Finally in the third 
section, we summarize our results. 

A formal solution for the parameterization of the MS 
error 

Let us break the trajectory of the particle traversing the material in the detector into a 
series of quasi straight lines, aa’, a’a”, . . . . each with an infinite radius of curvature, such that 
the trajectory that associates the two locations a and b can be described by a sum of these 
straight lines. To first order the scattered direction cosines at location b are described by: 

ftb = 2” + 6ki”b 
(1) 

with, 6%Ob = C&f?“““, a sum over a series of small random direction vectors. Our aim is to 
estimate the quantities 6Pb. The solution to this problem described in [l] is not unique, we 
therefore wish to derive the most general solution in the spirit of the stochastic nature of 
the MS process. 

On the single scattering event level we may assume that the process is elastic. Energy loss 
corrections for a finite path length, can be imposed independently by reducing the particle 
momentum as a function of the length of the traversed material. Since each scattering event 
is essentially a rotation, we apply a series of successive infinitesimal rotations to the incident 
direction vector, 2”. In general, to rotate a vector in space, one needs 3 Euler angles but we 
may neglect the translation parameters. After each scattering event, i, that occurs between 
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. 
the planes a and b, the direction vector ? IS rotated by the infinitesimal rotation matrix: 

( 

0 wj 4; 
El zz -J 0 

.3 
1 

lo; (2) 
w; 4; 0 

where, WA are small stochastic variables. The scattered direction vector after the jth scatter- 
ing event is thus: 

2” = (I + &) 2’ (3) 

with I, the 3 x 3 unit matrix. After n scattering events the initial direction vector, a’, has 
gone through 7~ independent rotations such that the direction vector in location b is described 
by: 

gih = fi[I + 21 aa (4) 
i=l 

Note that second (and higher) order terms like, 

2 E$E&, etc. 
j=l,k#j 

average to 0 fast enough, and can thus be neglected. This leads to: 

sib = [I + 2 Ei] P 
i=l 

(5) 

Let us define the resulting rotation matrix after n Coulomb scattering events as: 

e& 
i=l 

(6) 

The effective rotation of the direction vector after the MS process is therefore: 

fb = [I + ?] ic” 

with the resulting matrix, Z, given by: 

(7) 

0 % -Jiz 
z= -r=& 0 i=Il (8) 

a -0, 0 

where the effective rotation angles, fii,, are GaUSsian distributed stochastic variables with a 
zero mean and a finite ns: 

rim = 12 (WJ = n (A j&,, 
,=I 
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Without any loss of generality we can estimate.the order of q for a particle with the 
incident direction vector, 2’ = (O,O, 1). The dot product between the direction vectors, is 
proportional to the scattering angle, OAfs: 

J@qTy = Cos((pS) g 1 - y 

Note however, that the rotated direction vector has to be normalized, such that , kb.%’ = 1. 
We thus have, 

-- 
2= &[I+‘]P= d& (-%%,l) 

with the normalization factor, N = JT, 1 + R, + R, The isotropy of the scattering material 
and the stochastic nature of the process, allows to ELBBUIIX that the effective rotation angles, 
fi*, are of the same order. We therefore substitute equation (11) into (10) with the above 
assumption, q Z @, to obtain an estimate for the rotation angles wns: 

Using equation (7) for an arbitrary incident vector, ir = (a,,&,&), we have, 

2’ = [I + z] ic (13) 

which up to a normalization factor leads to the sought expressions for the direction errors: 

sir= (is;;) =%ixii (14) 

--- 
with 0 = (n,,n,,Cl,), each with an rms of the order of, 9. The sum over stochastic 

variables is a stochastic variable itself, therefore the average rotation angles, n,, fulfill the 
following relation: 

-- __ 
R&l/j = R,R@ (15) 

In view of equation (15), the components of the error matrix are: 

(6&65,J - (6i,)(6&) = q1 - ii) 

(6iJ~8) - (6?,)(6+) = (17) 

((&x&&3 - &&&)(~~,,%5, - &4=&)) - 

(&z&,+ - &2,3,~&,)(&3y~i,~, - &x,$&4 
@A’s* 

= -&$,- 
2 
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with, &4-i, the Levi-Civita density tensor. 
Let us emphasize again that the error matrix, Ve!, is easily transformed to any other 

set of parameters other than the Cartesian. Using the “propagation error formula” [6], 

v,“(f) cz 2 ~$d4~ 

one can express the errors on any other parameterization, f, of the particle trajectory. 

An algorithm for the MS error estimate 

For a large number of scattering events, n > 1, the formal solution described above, can be 
built into an n-independent algorithm for a Monte Carlo estimate of the MS errors. 

The problem of a particle traversing any number of radiation lengths, can be described 
by a random walk (RW), where the errors of a single step are inferred from equation (14), 
and the different energy 10~s mechanisms. The ‘step length‘ of the ‘walking‘ particle has 
to be much smaller than the total distance after n steps. The measured MS angle for a 
particle traversing 0.1 of a radiation length, was found to agree with Moliere’s theory [7]. 
However, it is common to parameteriee the angular error by the Highland formula 121. Our 
RW scheme breaks the particle trajectory in the scattering material into n steps, each step 
approximated by a quasi linear curve of 0.1 of a radiation length. The total trajectory sums 

up to an n-step walk. With each step is associated a random direction error and thus a 
position error (displacement). These errors sum up to an end-to-end error on the position 
and the direction of the emerging particle, compared to a particle traversing the vacuum 

At a given step, i, the errors of the track parameters (the position and the direction of 
the particle at that step) due to the MS process can be described by a 4 dimensional vector, 
6~1 = (6z,6y, 6i,6$), and an average momentum loss, 6~. The error after an 71 step walk is 
thus described by a sum over the local random vectors 6v,: 

6V=&6vi W 
i=l 

where 6V is the 4.dimensional error vector that emerges from the n-step walk. The prob- 
ability density of finding 6V between 6V and 6V + d46V can be described by a Gaussian 
distribution: 

G(Wd”6V = (2m;M,)2 exp[-&(6V - (6V))rAK’(6V - (6V))] (19) 

where M is the end-to-end covariance error matrix given by, 

Mao = (6vJvd - (6~a)(6~a) (20) 

with a,P running over the 4 indices of the local vector 6v, . The moments , (6~~) and 
(6v,bvo), are given by the following integrals: 

(6~4 = J 6v,p(6v)d”bv 
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(6v,6vo) = J 6v,6vap(6v)d46v (21) 

with p(6v)d46v, the joint probability that the components of a single step vector, Sv,, fall 
in the interval bv, $ d6v,. The integration over these correlated variables is done in the 
entire 4-dimensional parameter space and due to the correlation of the track parameters, it 
is non trivial, 

The RW approach allows one to calculate these integrals and obtain the end-to-end error 
matrix, M-0, based on the knowledge of p(6v)d46v. The problem is thus reduced to the 
parameterization of the local errors of each of the entries, v,, in a single step. The errors 
in a given step are calculated according to equation (14). The three independent random 

variables, n=, are each of a Gaussian probability density, p(&)da, 0: exp( A), with 

o(@“rs) parameterized in the Highland fashion [2]: 

,(@h’S) = yG[l. + O.O38log(L)] 

The error on the position for each step is determined by equation (14) and the step length. 
The energy loss at each step, is accounted for by a parameteriaation based on a fit to the 
data in [a]. Following this concept, our algorithm is consisted of simulating a RW of a 
particle with an initial momentum, p,, through various numbers of radiation lengths, L,. 
The end-to-end error matrix is estimated by the rms of the position and direction errors of 
the particle as it emerges out of the material. 

Results 

In this study 1000 ‘muons’ are stepped with a 0.1 radiation length step size, in a RW manner, 
through various numbers of radiation lengths, all with an initial momentum of 40 GeV and 
an incident direction of, $(l, 1,l). 

Our results are shown in figures 1 to 3. In figure la-ld we show the accumulated error on 
the direction and the position of a 40 GeV muon traversing 100 radiation lengths (equivalent 
to 1.76 m of iron). The distributions are of a Gaussian form with a zero mean and a finite 
rms. In figure 2a-2f we plot the correlations between the track parameters. The long range 
correlations seen in figure 2a indicate that the particle remembers its direction. However, 
had we rotated the system of coordinates to the particles momentum &S, i.e. (O,O,l), the 
correlations would have vanished due to the azimuthal symmetry. In figure 3-a we plot the 
projected mean scattering angle defined as, 

&w 
rms = cocyg ;h” &:t) 

with in/out standing for going into/out of the scattering material. In fig. 3-b we plot the 
average momentum of the emerging muon after its n-step walk. In fig. 3-c we plot the ~m.s 
of the accumulated direction error, and fig. 3-d shows the position errors after traversing 
the material. Overlaid are functions of the form; 
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for the mean scattering angle (fig. 3-a), 

(24) 

for the momentum after accounting for the energy loss (fig. 3-b), 

f@,,p, = 40.) = 40. - cp Lo (25) 

for the direction error (fig. 3-c), 

fc(@ AfS,Lo,p. = 40.) = c(peti) VT3 +J) 

and for the position error (fig. 3-d), 

fd(cF,L,,p, = 40.) = c(&j) m a 
u(cF) L 

o (27) 

all with ~(0”‘~) of equation (22). The parameter , cP, in equation (25) is cz 0.0155, which 
implies E 0.6 GeV energy 10~s per radiation length for a 40 GeV muon traveling in iron. The 
parameter c&j) !Z 0.8 in equations (26) and (27), is related to the correlation coefficient of 
the linear dependence between the errors in each direction. 

To summarize, based on the stochastic nature of the MS process, we have formally 
derived a closed form of the errors inflicted on the track parameters for a particle traversing 
the detector material. This error parameterization is used to simulate a random walk type 
of solution to estimate the end-to-end error matrix. The errors are well described by the 
Highland formula. 
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Figure captions 

Fig. 1 Distribution of the errors of a 40 GeV muon traversing 100 radiation lengths. Figure 
l-a and l-b show the direction errors, and l-c and l-d the position errors. 

Fig. 2 Correlations between errors of a 40 GeV muon traversing 100 radiation lengths. 
Figure 2a shows the correlations, (6i6$), fig. 2-b shows the correlations , (6z6y), 2-c and 
2-d depict respectively the correlations, (6z6i) and (SyQ). In figures 2-e and 2-f we plot 
the correlations, (6z6$) and (Sy6&) respectively. 

Fig. 3 In fig. 3-a we show the projected mean scattering angle, OLfi, of equation (23), 
as a function of, L,, in fig. 3-b we plot the momentum of the muon after traversing the 
material with L,, radiation lengths. In fig. 3-c and fig. 3-d we show the direction error and 
the position errors of the emerging muon after the n-step walk. Overlaid are the functions 
of equations (24) - (27). 
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